715 research outputs found

    The maximum forcing number of polyomino

    Full text link
    The forcing number of a perfect matching MM of a graph GG is the cardinality of the smallest subset of MM that is contained in no other perfect matchings of GG. For a planar embedding of a 2-connected bipartite planar graph GG which has a perfect matching, the concept of Clar number of hexagonal system had been extended by Abeledo and Atkinson as follows: a spanning subgraph CC of is called a Clar cover of GG if each of its components is either an even face or an edge, the maximum number of even faces in Clar covers of GG is called Clar number of GG, and the Clar cover with the maximum number of even faces is called the maximum Clar cover. It was proved that if GG is a hexagonal system with a perfect matching MM and K′K' is a set of hexagons in a maximum Clar cover of GG, then G−K′G-K' has a unique 1-factor. Using this result, Xu {\it et. at.} proved that the maximum forcing number of the elementary hexagonal system are equal to their Clar numbers, and then the maximum forcing number of the elementary hexagonal system can be computed in polynomial time. In this paper, we show that an elementary polyomino has a unique perfect matching when removing the set of tetragons from its maximum Clar cover. Thus the maximum forcing number of elementary polyomino equals to its Clar number and can be computed in polynomial time. Also, we have extended our result to the non-elementary polyomino and hexagonal system

    Graphical condensation of plane graphs: a combinatorial approach

    Get PDF
    The method of graphical vertex-condensation for enumerating perfect matchings of plane bipartite graph was found by Propp (Theoret. Comput. Sci. 303(2003), 267-301), and was generalized by Kuo (Theoret. Comput. Sci. 319 (2004), 29-57) and Yan and Zhang (J. Combin. Theory Ser. A, 110(2005), 113-125). In this paper, by a purely combinatorial method some explicit identities on graphical vertex-condensation for enumerating perfect matchings of plane graphs (which do not need to be bipartite) are obtained. As applications of our results, some results on graphical edge-condensation for enumerating perfect matchings are proved, and we count the sum of weights of perfect matchings of weighted Aztec diamond.Comment: 13 pages, 5 figures. accepted by Theoretial Computer Scienc

    The Clar covering polynomial of hexagonal systems I

    Get PDF
    AbstractIn this paper the Clar covering polynomial of a hexagonal system is introduced. In fact it is a kind of F polynomial [4] of a graph, and can be calculated by recurrence relations. We show that the number of aromatic sextets (in a Clar formula), the number of Clar formulas, the number of Kekulé structures and the first Herndon number for any Kekuléan hexagonal system can be easily obtained by its Clar covering polynomial. In addition, we give some theorems to calculate the Clar covering polynomial of a hexagonal system. As examples we finally derive the explicit expressions of the Clar covering polynomials for some small hexagonal systems and several types of catacondensed hexagonal systems. A relation between the resonance energy and the Clar covering polynomial of a hexagonal system is considered in the next paper
    • …
    corecore